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Abstract. An external electric field is provided to the familiar one-dimensional quantum harmonic 

oscillator model with a various position mass m(x) =
a m0

a+x
. The Nikiforov-Uvarov approach is involved 

to investigate a particular solution to the exact Schrödinger equation. The exactly solvable confined 

model of the quantum harmonic oscillator in an external electric field was proposed. Starting with the 

BenDanial-Duke kinetic energy operator approximations, the construction of the position-dependent 

mass Schrödinger equation is studied. The analytic representation of the wave functions of the stationary 

states is expressed analytically and graphically using modified Laguerre polynomials as well as the 

energy spectrum. In contrast with the absence of an external electric field, when the energy spectrum 

totally overlaps with that of the harmonic oscillator potential in an external electric field: the energy 

spectrum becomes non-equidistant and varies depending on some factors. The Nikiforov-Uvarov 

approach succeeds broadly in demonstrating the wave function and energy spectrum and showing good 

sense. 
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1.       Introduction   

 

A quantum mechanical equation called the Position dependent mass (PDM) 

Schrödinger Equation (SE) shows how a particle with variable mass behaves while 

moving through a potential energy field. The mass of the particle is supposed to be 

constant in the classical Schrödinger equation. However, some physical systems, 

particularly those related to condensed matter physics and nanotechnology, show PDM 

distributions. 
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In the PDM SE, the particle's mass is allowed to change with position. Compared 

to the original SE, this adds an additional level of complexity to the equation. The 

equation considers both the particle's spatial variation in mass as well as the potential 

energy landscape it is traversing. Novel quantum mechanical effects and behaviors that 

do not exist in systems with constant mass may result from this. 

The common form of this equation is: 

 

−
ℏ2

2
∇. (

1

m(x)
∇ψ(x)) + V(x)ψ(x) = Eψ(x), (1) 

 

where ℏ is the reduced Planck constant,∇ is the gradient operator and m(x) is the PDM.  

In recent years, several attractive research have been conducted on quantum 

systems with effective PDM (von Roos, 1983; Smith et al., 1990; Barranco et al., 1997). 

In many applied areas such as modern physics, the Schrödinger equations with a position-

dependent mass are a highly helpful model. The research of the electronic properties of 

semiconductors (Bastard, 1990; Weisbuch et al., 1993), graded alloys and semiconductor 

hetero structures (Lévai, 1994), quantum liquids (De Saavedra, 1994), quantum wells and 

quantum dots (Harrison et al. ,2016; Galbraith et al., 1988; Young, 1983) are examples 

of special applications in condensed matter. 

The rigorous solutions of the SE defining certain nonrelativistic quantum systems 

are always appealing due to their enormous potential for explaining a broad variety of 

occurrences in quantum physics and attached fields. Among such interesting quantum 

mechanical difficulties, another challenge is provided by involving an external field to a 

quantum system. 

This work uses a transformation of the wave function to investigate the effective 

PDM SE; to solve the effective PDM SE for harmonic oscillator potential in the presence 

of an external electric field for first time in our known, where we used the Nikiforov-

Uvarov (NU) approach. 

The following is the outline for the present paper. The PDM SE by using the 

BenDanial-Duke kinetic energy operator is reviewed in Section 2. The NU method is 

outlined in Section 3. The effective PDM SE is solved in Section 4. A summary concludes 

the paper. 

 

2.      PDM SE Using BenDaniel-Duke Kinetic Energy Operator 

 

For our calculations, we choose the Hermitian form of the kinetic energy operator 

with effective PDM (also known as the BenDaniel-Duke kinetic energy operator) 

(BenDaniel, 1966). 

Starting with BenDaniel-Duke kinetic energy operator: 

Ĥ0
BD = −

ℏ2

2
 
d

dx

1

m(x)

d

dx
, (2) 

Ĥ0
BD = −

ℏ2

2
 
d

dx
[

1

m(x)

d

dx
]. (3) 

Now we have multiplication derivatives. 
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Ĥ0
BD = −

ℏ2

2
 [−

m′(x)

m2(x)

d

dx
+

1

m(x)

d2

dx2
]. 

(4) 

Taking 1/m(x) as a common factor: 

Ĥ0
BD = −

ℏ2

2m(x)
 [

d2

dx2
−

m′(x)

m(x)

d

dx
]. (5) 

   

BenDaniel–Duke Hamiltonian is given by using equation (4) and the potential 

energy: 

 ĤBD = Ĥ0
BD + V(x).                                                                                                                                                            (6) 

 

Using (5) and (6), we get 

ĤBD = −
ℏ2

2m(x)
 (

d2

dx2
−

m′(x)

m(x)

d

dx
) + V(x). 

(7) 

Schrödinger equation when using the BenDaniel–Duke Hamiltonian becomes as  

ĤBDψ(x) = Eψ(x). (8) 

Using equation (7) in (8), we get 

[−
ℏ2

2m(x)
 (

d2

dx2
−

m′(x)

m(x)

d

dx
) + (V(x) − E)]ψ(x) = 0. (9) 

 

The last equation is called the position-dependent mass Schrödinger equation, 

which results from using the position-dependent mass BenDaniel–Duke kinetic energy 

operator. 

 

3.      Nikiforov Uvarov (NU) Method 

 

The NU method, commonly known as the (NU) technique, is a mathematical 

approach for solving second-order linear differential equations. This method is effective 

for solving Schrödinger-type equations in quantum mechanics (Al-Hawamdeh et al., 

2023), particularly those involving quantum systems with special forms of potentials. 

The method involves reducing the second-order differential equation to a known 

orthogonal polynomial equation, such as the Hermite, Laguerre or Jacobi equation. The 

mathematical features of these orthogonal polynomials are well defined and solving the 

resulting orthogonal polynomial equation allows one to identify the solutions to the 

original differential equation. 

The Schrödinger equation in one dimension is simplified using this technique for a 

given potential to a generalized hypergeometric equation with the necessary, coordinate 

transformation  s = s(x). and it can be written as follows: 

ψ′′(s) +
τ̃(s)

σ(s)
ψ′(s) +

σ̃(s)

σ2(s)
ψ(s) = 0, (10) 
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where σ(s) and σ̃(s) are polynomials of degree at most two, τ̃(s) is 1st degree polynomial, 

and ψ(s) is a hyper geometric function. 

And the SE is written for any potential in the general form shown below: 

 

[
d2

ds2
+

α1 − α2s

s(1 − α3s)
 
d

ds
+

−ξ1s
2 + ξ2s − ξ3

s2(1 − s)2
]ψ = 0. (11) 

 

To get a particular solution for equation (10) by separation of variables, the wave 

function is made up of multiples of two separate sections as: 

 

ψ(s) =  φ(s)y(s). (12) 

 

If one deals with the above transformation; then equation (10) modified to the hyper 

geometric equation: 

 

σ(s)yn
′′(s) + τ(s) yn

′ (s) + λyn(s) = 0, (13) 

 

where  

τ(s) = 2π(s) + τ̃(s). 
 

(14) 

Its derivative is negative τ′(s) < 0 (Nikiforov & Vasiliĭ, 1988), this condition helps 

to generate physical solutions. 

And φ(s) is described as a derivative of a logarithm: 

 
φ′(s)

φ(s)
=

π(s)

σ(s)
, 

 

(15) 

here, π(s) is a polynomial with one degree or less. 

Equation (13) is a hypergeometric-type differential equation and its solution is 

given by Rodrigues relation (Nikiforov & Uvarov, 1988). 

 

yn(s) =
Bn

ρ(s)

dn

dsn
[σn(s)ρ(s)], (16) 

  

where Bn is the normalization constant, ρ(s) is the weight function, and n is a fixed given 

number. 

The weight function ρ(s) is satisfies the following differential equation. 
d

ds
[σ(s)ρ(s)] = τ(s)ρ(s), (17) 

or  

ρ′(s)

ρ(s)
=

τ(s) − σ′(s)

σ(s)
. 

 

(18) 

The function of π(s) is given by 

π(s) =
 σ ′ − τ̃(s)

2
± √(

 σ ′ − τ̃(s)

2
)2 − σ̃(s) + kσ(s) (19) 
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and 

k = λ − π′(s). (20) 

As a result, setting the discriminated of the square root in (19) to zero for the 

computation of π(s) makes the finding of k the most important step. Additionally, the 

eigenvalue equation described in (20) now has the new form: 

λ = λn = −n τ′ −
n(n − 1)

2
σ ′′(s) , (n = 0, 1, 2, … ). (21) 

Prime factors, in this case, signify the first-degree differentials. 

 

4.       Harmonic oscillator potential (HOP) with a PDM under  

          external electric field 

 

A fundamental idea in quantum physics is that HOP describes the fundamental 

behavior of particles inside confining potentials. The complexity of quantum systems 

greatly increases when the effect of an external electric field and the consideration of a 

PDM are coupled. To fully comprehend the resulting quantum dynamics, this work 

concerned to several branches: the interesting interaction between a HOP; PDM and an 

external electric field. 

The potential energy function is a confined harmonic oscillator potential in an 

external electric field as follows: 

V(x) = Vho(x) + Vext(x). (22) 

Then  

V(x) = {
m(x)ω2x2

2
− qℰx , −a < 𝑥 < +∞}, 

  (23) 

where m(x) is the mass function, ω is the frequency of the oscillator, q is the charge of 

electron, ℰ is the electric field and a is the confinement parameter. 

Using equation (23) into equation (7), we get  

 

ĤBD = −
ℏ2

2m(x)
 (

d2

dx2
−

m′(x)

m(x)

d

dx
) + (

m(x)ω2x2

2
− qℰx). 

 

(24) 

Then the Schrödinger equation when using the BenDaniel–Duke Hamiltonian, by 

substituting equation (24) in (8), we get 

 

[−
ℏ2

2m(x)
 (

d2

dx2
−

m′(x)

m(x)

d

dx
) + (

m(x)ω2x2

2
− qℰx − E)]ψ(x) = 0. 

 

(25) 

Multiplying both sides by (−
2m(x)

ℏ2
), so it becomes 

 

[
d2

dx2
−

m′(x)

m(x)

d

dx
−

2m(x)

ℏ2
(
m(x)ω2x2

2
− qℰx − E)]ψ(x) = 0. 

 

(26) 

More simplifying 
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[
d2

dx2
−

m′(x)

m(x)

d

dx
− (

m2(x)ω2

ℏ2
x2 −

2m(x)qℰ

ℏ2
x −

2m(x)E

ℏ2
)]ψ(x) = 0. (27) 

 

To satisfy the confinement effect of the potential (23), we must now define effective 

PDM. So, we demand that the effective PDM m(x) meet the following requirements: 

m(x) should return the accurate constant mass m0 at the origin of position x = 0 and 

afterwards within the bounds of a → ∞, At the position x = −a, the HOP should have an 

infinite high wall, or V(x) = +∞ for −∞ < 𝑥 ≤ 𝑎 and it should be possible to precisely 

solve the SE for the Hamiltonian with the BenDaniel-Duke kinetic energy operator and 

HOP with the PDM m(x), i.e., with analytic expressions for the stationary state wave 

functions and the energy spectrum. Now we define the following analytical formula for 

the effective PDM based on the conditions given above, as 

 

m(x) =
a m0

a + x
, 

 
(28) 

when m(0) = m0 then the fact that the first condition is easily satisfied as well as 

 

lim
a→∞

a m0

a + x
= m0. 

 
(29) 

Regarding the second requirement, we note that the potential (23) with effective 

PDM m(x) (28) has the appropriate infinite high walls boundary conditions. 

 

V(−a) =  +∞. 
 

(30) 

The only thing left to do is to demonstrate that the third criterion has been satisfied. 

As a result, we must explicitly solve the SE for the Hamiltonian ĤBD (7).  

Considering that  

m′(x) = −
a m0

(a + x)2
 (31) 

and  

m′(x)

m(x)
= −

1

a + x
. 

 

(32) 

Now substituting the equations (28) and (32), in equation (27). So, we obtained the 

Schrödinger equation describing the motion of our oscillator model in an external electric 

field. 

 

[
 
 
 
 
 

d2

dx2
+

1

a + x

d

dx
−

(

a2m0
2ω2

ℏ2 x2 − 
2a m0qℰ

ℏ2 x(a + x)  − 
2a m0E

ℏ2 (a + x)

(a + x)2
)

]
 
 
 
 
 

ψ(x) = 0. (33) 

 

Now expanding the above equation so it becomes as 
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[
 
 
 
 

d2

dx2
+

1

a + x

d

dx
−

(

a2m0
2ω2

ℏ2 x2 − 
2a2m0qℰ

ℏ2 x − 
2a m0qℰ

ℏ2 x2 − 
2a2m0E

ℏ2  −  
2a m0E

ℏ2 x

(a + x)2
)
]
 
 
 
 

ψ(x) = 0    (34) 

  

Now we want to introduce a new variable so that we can solve the above equation, 

this variable is ξ and it’s a dimensionless variable as  

ξ =
x

a
 (35) 

with 
d

dx
=

1

a

d

dξ
 (36) 

 

and taking the square for both sides 

 

d2

dx2
=

1

a2

d2

dξ2
. (37) 

 

After that the equation becomes 

 

[
 
 
 
 
 

d2

dξ2
+

1

1 + ξ

d

dξ
−

(
 
a4m0

2ω2

ℏ2 ξ2 − 
2a3m0qℰ

ℏ2 ξ − 
2a3 m0qℰ

ℏ2 ξ2 − 
2a2m0E

ℏ2   −  
2a2 m0E

ℏ2  ξ 

(1 + ξ)2
)
]
 
 
 
 
 

ψ(ξ) = 0 

 

       

(38)  

with  

α0 =
2a2m0E

ℏ2
 (39) 

α1 =
2a3m0qℰ

ℏ2
 

(40) 

 

and 

α2 =
a4m0

2ω2

ℏ2
− α0. (41) 

 

Introducing this notation after that 

 

λ0 = √
m0ω

ℏ
. (42) 

Equation (40) becomes as  

α2 = a4λ0
4 − α0. (43) 

Substitute equations (39), (40) and (41) in equation (38) it becomes as 
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[
 
 
 
 

d2

dξ2
+

1

1 + ξ

d

dξ
+

α0  + (α0 + α1)ξ−(α0 − α1+α2)ξ
2

(1 + ξ)2 ]
 
 
 
 

ψ(ξ) = 0. (44) 

 

In another way 

ψ′′ +
1

1 + ξ
ψ′ +

α0  + (α0 + α1) ξ−(α0 − α1+α2)ξ
2

(1 + ξ)2
ψ = 0, (45) 

 

where 

ψ′′ =
d2ψ

dξ2
 , ψ′ =

dψ

dξ
. (46) 

Now we are going to apply NU method to solve equation (45), so the second order 

differential equations of this type: 

ψ′′ +
τ̃

σ
ψ′ +

σ̃

σ2
ψ = 0 (47) 

can be solved using this technique.  

Here  

τ̃ = 1, (48) 

σ = 1 + ξ, (49) 

σ̃ = α0  + (α0 + α1) ξ−(α0 − α1+α2)ξ
2. (50) 

  

Now we search for the answer to equation (47) by introducing ψ(ξ) as follows: 

 

ψ(ξ) = φ(ξ)y, (51) 

  

where φ(ξ) represented in terms of σ and  π which is an arbitrary polynomial essentially 

of first degree. 

In this context, φ(ξ) is defined in the following way (Mammadova, 2022):  

 

φ(ξ) = e
∫
π(ξ)
σ(ξ)

dξ
, (52) 

  

where π(ξ) is also a polynomial at least to the 1st degree. 

Then equation (51), becomes as  

 

ψ(ξ) = e
∫
π(ξ)
σ(ξ)

dξ
y. (53) 

  

Simple calculations make it possible to find 

 

ψ′(ξ) = (
σ(ξ)y′ + π(ξ)y

σ
)e

∫
π(ξ)
σ(ξ)

dξ
 (54) 

  

and the second derivative is 

ψ′′(ξ)  = [
σ(ξ)(σ(ξ)y′′ + 2π(ξ)y′) + y(σ(ξ)π′(ξ) − π(ξ)σ′(ξ) + π2(ξ))

σ2(ξ)
] e

∫
π(ξ)
σ(ξ)

dξ
. (55) 
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Equation (55) in another way  

 

ψ′′(ξ) = [
σ(ξ)π′(ξ) − π(ξ)σ′(ξ) + π2(ξ)

σ2(ξ)
y +

2π(ξ)

σ(ξ)
y′ + y′′] e

∫
π(ξ)
σ(ξ)

dξ
. (56) 

 

These calculations leas to the equation for y(ξ) 

 

y′′ +
2π + τ̃

σ
y′ +

σ̃ + π2 + π (τ̃ − σ′) + π′σ

σ2
y = 0, (57) 

where   

τ = 2π + τ̃ (58) 

and 

σ̅ = σ̃ + π2 + π (τ̃ − σ′) + π′σ. (59) 

 

So, we can write equation (57) as  

y′′ +
τ̃

σ
y′ +

σ̃

σ2
y = 0. 

(60) 

 

 

Concerning that  σ̅ is a polynomial of mostly 2nd degree, it is necessary that 

σ̅ =  λσ 
(61) 

 

with λ = const. 
If we put equation (61) in equation (59), so it becomes as  

 

π2 + π (τ̃ − σ′) + σ̃ − (λ − π′)σ = 0. (62) 

  

Introducing a new notation.  

k = λ − π′ (63) 

  

Equation (62), becomes as quadratic equation for π(ξ)   

π2 + π (τ̃ − σ′) + σ̃ − kσ = 0. (64) 

Let  

τ̃ − σ′ = 0. (65) 

Then quadratic equation (64) simplified as  

π2 + σ̃ − kσ = 0. (66) 

Thus   

π = μ √kσ − σ,̃ (67) 

where μ = ±1. 
Now the following possible expressions for π(ξ) are then obtained. 

π(ξ) = {

μ √−α1 ξ+(α0 − α1+α2)ξ2 , k = α0

μ √(a4λ0
4 − α1)  ξ, k = α0 + α1    

  

}. 
(68) 

 

Now, after discovering the explicit expressions of the functions (π(ξ)) and (σ(ξ)), 

one can also get the explicit expression of (φ(ξ)) from (47), after using simple 

calculations and for this case k = α0 + α1  we obtain 
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φ(ξ) = (1 + ξ)−μa2λ0
2  e

μ√a4λ0
4−α1  ξ

. (69) 

For φ(ξ), the essential boundary conditions are fulfilled: 

lim
ξ→−1

φ(ξ) = 0 ,     lim
ξ→∞

φ(ξ) = 0. (70) 

To satisfy the requirement μ = −1 for φ(ξ), the case k = α0 + α1should be chosen.  

These results result in the final expressions of π(ξ) and φ(ξ) as follows: 

π(ξ) = μ √(a4λ0
4 − α1), (71) 

φ(ξ) = (1 + ξ)a2λ0
2  e

−√a4λ0
4−α1  ξ

. (72) 

Now equation (51) becomes as  

ψ(ξ) = [(1 + ξ)a2λ0
2  e

−√a4λ0
4−α1  ξ

] y. (73) 

The 2nd order differential equation for y that demonstrated from substituting ψ in 

equation (45) is as follows: 

(1 + ξ)y′′ + (2a2λ0
2 + 1 − 2√a4λ0

4 − α1 (1 + ξ)) y′

= ((2a2λ0
2 + 1)√a4λ0

4 − α1 −2a4λ0
4 + α1 − α0 ) y. 

(74) 

Now compare the above equation with the following equation for the generalized 

Laguerre polynomials to arrive at polynomial solutions (Koekoek et al., 2010) 

(x − d)yn
′′(c) + {2ε(x − d) + α + 1}yn

′ (x) = 2ε n yn(x), (75) 

where d < 𝑥, 𝜀 < 0 and α +  1 >  0. 

Thus  

yn(x) = Ln
α  (2ε (d − x)). (76) 

Here the first four values of generalized Laguerre polynomials  
 

Table 1. The first four values of generalized Laguerre polynomials 

 

n Ln
α(x) 

0 1 

1 −x + (α + 1) 

2 
x2

2
− (α + 2)x +

(α + 1)(α + 2)

2
 

3 

 

−
x3

6
+

(α + 3)

2
x2 −

(α + 2)(α + 3)

2
x +

(α + 1)(α + 2)(α + 3)

6
 

 

After comparing equation (74) with (75) we get.  

yn(x) = Ln
2a2λ0

2

 (2√a4λ0
4 − α1  (1 +

x

a
)). (77) 

Using equation (40) and equation (42) 
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yn(x) = Ln

(2
m0ω

ℏ
a2)

 (2
m0ω

ℏ
a√1 −

2qℰ

m0ω2a 
 (1 +

x

a
))  (78) 

and put 

α = 2
m0ω

ℏ
a2. (79) 

The solution to this second-order differential equation for yn(x) is already known. 

Comparing (74) with (75),  

(2a2λ0
2√a4λ0

4 − α1 +√a4λ0
4 − α1 − 2a4λ0

4 + α1 − α0 )

= −2n√a4λ0
4 − α1 , 

(80) 

we get  

(2a2λ0
2
a2m0ω

ℏ
√1 −

2qℰ

m0ω2a
 +

a2m0ω

ℏ
√1 −

2qℰ

m0ω2a
 − 2

a4m0
2ω2

ℏ2

+
2a3m0qℰ

ℏ2
−

2a2m0E

ℏ2
 ) = −2n

a2m0ω

ℏ
√1 −

2qℰ

m0ω2a
 . 

(81) 

Then the energy eigen value equation is  

E = (a2λ0
2ℏω√1 −

2qℰ

m0ω2a
 +

ℏω

2
√1 −

2qℰ

m0ω2a
 − m0a

2ω2 + qℰ

+ nℏω√1 −
2qℰ

m0ω2a
  ). 

(82) 

Combining the same terms now 

E = En
qℰ

= ℏω√1 −
2qℰ

m0ω2a
 (n +

1

2
+ a2

m0ω

ℏ
) − m0a

2ω2 + qℰ. (83) 

After these computations and by using equations (73) and (78) we get the 

orthonormal wave functions, which presented by a particular exact formula: 

ψn
qℰ(x) = Cn

qℰ
(1 +

x

a
)

m0ω

ℏ
a2  

e
− 

m0ω

ℏ
a√1− 

2qℰ

m0ω2a 
 (x+a)

Ln

(2
m0ω

ℏ
a2)

 (2
m0ω

ℏ
a√1 −

2qℰ

m0ω2a 
 (x + a)).  

(84) 

 Now, the exact form of the normalization constant of PDM SE with the HOP. 

Normalization constant can be derived from the wave functions' orthogonality relation. 

∫ ψ̃m(x)ψ̃n(x)
∞

−∞

dx = ∫ ψ̃m(x)ψ̃n(x)
∞

−a

dx = δmn. (85) 

  

Here we get 

Cn
qℰ

= (−1)n (2
m0ω

ℏ
a2√1 −

2qℰ

m0ω
2a 

)

m0ω
ℏ

a2+
1
2
 

 √
n!

aΓ(n + 2
m0ω

ℏ
a2 + 1) 

. (86) 
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Our main objective was to demonstrate an exact solution of the SE associated with 

a Hamiltonian using the BenDaniel-Duke kinetic energy operator and a HOP in an 

external electric field with effective PDM m(x) of type (28). By obtaining analytical 

wavefunctions and energy spectrum expressions (83) and normalized wavefunctions (84), 

we were able to do this. 

 

 

Figure 1. Plot of the Wave functions ψn
qℰ(x) for   ε =

1

2
 ,  

the confinement parameter a = 4 (m0 = ω = ℏ = 1) and α = 32 

 

 

  

Figure 2.a. |ψ0(x)|
2 Figure 2.b.  |ψ1(x)|

2 

          



E.K. JARADAT et al.: DEMONSTRATING SHRODENGER EQUATION INVOLVING… 

 

 
27 

 

 

 

Figure 2.c. |ψ2(x)|
2 Figure 2.d.  |ψ3(x)|

2 

 

Figure 2. Plotting of the probability densities of the wave functions |ψn(x)|
2 for the value of  ε =

1

2
 , 

the confinement parameter a = 4 (m0 = ω = ℏ = 1) and α = 32 

 

Here the wave function was plotted in the plot-range −4 ≤ x ≤ 6 and for the 

quantum number 0 ≤ n ≤ 3, According to the figures, we see that when n rises, new 

nodes arise in the curve.  

Figure 2 shows the probability densities |ψn
qε(x)|2 of the ground state and three 

excited states at a confinement parameter of a = 4.  

Consequently, as a quantum number increases, the amplitude decreases and the 

location moves toward the right side. Also, the numbers of peaks grow as the quantum 

number (n) increases, as can be seen from our observations. 

 

5.      Conclusion 

 

The PDM SE for the most well-known HOP in an external electric field, which has 

numerous interesting applications such as semiconductors, semiconductor 

heterostructures, quantum dots and other quantum mechanical systems has been 

demonstrated using the Nikiforov-Uvarov NU method that proved its powerful 

efficiency. We investigate a particular expression for the Eigen functions and the energy 

spectrum. The wave functions of the constructed model are expressed in terms of 

generalized Laguerre polynomials. Also, it is demonstrated that the mass distribution 

affects the energy levels of the PDM Schrödinger equation. NU method can be used to 

find eigenvalues and Eigen functions of Schrödinger type equations. As a consequence, 

the results have been acquired here, allowing for additional comparisons between the 

models. The wave functions for the ground state and the other three exited states are 

displayed explicitly in figures so that one can investigate the bound state. 

It shows that as the quantum number increases, new nodes arise; the numbers of 

peaks increase; the amplitude decreases and the location moves to the right side. The 

results provide a very well-expected sense. 
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